Matematika

Pertanyaan

persamaan garis singgung lingkaran (x-3)²+(y+5)²=80 yang sejajar dengan garis y-2x+5=0 adalah

1 Jawaban

  • Persamaan garis singgung lingkarannya adalah  

    • y = 2x + 9 atau 2x - y + 9 = 0
    • y = 2x - 31 atau 2x - y - 31 = 0

    Pembahasan

    Lingkaran (x - 3)² + (y + 5)² = 80 disinggung oleh garis-garis yang sejajar dengan garis y – 2x + 5 = 0.

    Step-1: siapkan pusat lingkaran dan jari-jari

    (x - 3)² + (y + 5)² = 80

    Dari bentuk eksplisit [tex]\boxed{~(x - a)^2 + (y - b)^2 = r^2~}[/tex] diperoleh koordinat pusat lingkaran P(3, -5) dan jari-jari r = √80.

    Step-2: siapkan gradien garis (m)

    Garis y – 2x + 5 = 0 merupakan bentuk implisit [tex]\boxed{~ax + by + c = 0~}[/tex] dengan gradien [tex]\boxed{~m = -\frac{a}{b}~}[/tex]

    [tex]m = -\frac{-2}{1} = 2[/tex]

    Atau jadikan bentuk eksplisit [tex]\boxed{~y = mx + c~}[/tex] yaitu y = 2x – 5, dengan gradien m = 2.

    Step-3: membentuk persamaan garis singgung lingkaran

    Gradien antargaris yang saling sejajar adalah [tex]\boxed{~m_1 = m_2~}[/tex] dengan demikian gradien persamaan garis singgungnya adalah m = 2.

    Rumus persamaan garis singgung lingkaran yang diketahui pusat lingkaran, jari-jari, dan gradien adalah  

    [tex]\boxed{~y - b = m(x - a) \pm r\sqrt{m^2 + 1}~}[/tex]

    Kita substitusikan pusat P(3, -5), jari-jari r = √80, dan gradien m = 2.

    [tex]y – (-5) = 2(x - 3) \pm \sqrt{80} \sqrt{2^2 + 1}[/tex]

    [tex]y + 5 = 2x - 6 \pm \sqrt{80} \sqrt{5}[/tex]

    y = 2x - 11 ± 20

    Persamaan garis singgung pertama adalah [tex]\boxed{~y = 2x + 9~atau~2x - y + 9 = 0~}[/tex]

    Persamaan garis singgung kedua adalah [tex]\boxed{~y = 2x - 31~atau~2x - y - 31 = 0~}[/tex]

    Pelajari lebih lanjut

    1. Kasus yang serupa https://brainly.co.id/tugas/14903957  
    2. Menentukan persamaan lingkaran yang diketahui pusat dan disinggung oleh sebuah garis https://brainly.co.id/tugas/10114985

    ----------------------------

    Detil jawaban

    Kelas         : XI

    Mapel        : Matematika

    Bab            : Lingkaran

    Kode          : 11.2.5.1

    Kata Kunci : persamaan garis singgung lingkaran, salah satu, pusat, jari-jari, gradien, sejajar, adalah, brainly

    Gambar lampiran jawaban hakimium

Pertanyaan Lainnya