Persamaan metode gabungan
Matematika
faizahyuliani
Pertanyaan
Persamaan metode gabungan
2 Jawaban
-
1. Jawaban cupid85
a) 4p + 2q = 8
2p + 3q = 10 |×2
4p + 2q = 8
4p + 6q = 20
--------------------(-)
- 4q = - 12
q = 3
2p + 3q = 10
2p + 3(3) = 10
2p + 9 = 10
2p = 10 - 9
p = ½
b) 5x + 2y = 23
- x + 7y = - 12 |×5
5x + 2y = 23
- 5x + 35y = - 60
-------------------------(+)
37y = - 37
y = - 1
x + 7y = - 12
x + 7(-1) = - 12
x = - 12 + 7
x = - 5 -
2. Jawaban Wenson
Mapel : Matematika
Kategori : SPLDV
Kelas : SMP / MTs
Semester : Ganjil
Pembahasan:
Soal nomer a
Eliminasi:
4p + 2q = 8 |1| 4p + 2q = 8
2p + 3q = 10 |2| 4p + 6q = 20 -
- 4q = - 12
q = 3
Substitusi:
2p + 3q = 10
2p + 3(3) = 10
2p + 9 = 10
2p = 10 - 9
[tex]p= \frac{1}{2} [/tex]
HP = {[tex]p= \frac{1}{2} [/tex], q = 3)
Soal nomer b
Eliminasi:
5x + 2y = 23 |1| 5x + 2y = 23
- x + 7y = - 12 |5| - 5x + 35y = - 60 +
37y = - 37
y = - 1
Substitusi:
x + 7y = - 12
x + 7(-1) = - 12
x = - 12 + 7
x = - 5
HP = {x = -5, y = -1}